Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrew D. Bond* and John E. Davies

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.054$
$w R$ factor $=0.145$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Lutidine

The crystal structure of 2,5-lutidine (2,5-dimethylpyridine, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$) has been determined at $150(2) \mathrm{K}$ following in situ crystal growth from the liquid. In space group $P \overline{1}$, the asymmetric unit contains two independent molecules. Molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions into polar chains aligned in a parallel manner to form polar sheets. Adjacent sheets are packed in an anti-parallel arrangement.

Comment

This work forms part of a study devoted to improving the techniques for determining the crystal structures of substances that are liquid at room temperature. We have reported previously the crystal structures of 2,6-lutidine (Bond et al., 2001) and 3,5-lutidine (Bond \& Davies, 2002), and report here the structure of the isomer 2,5-lutidine, (I), determined at 150 (2) K following in situ crystal growth from the liquid.

(I)

In space group $P \overline{1}$, there are two independent molecules of (I) in the asymmetric unit (Fig. 1). Molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions into extended chains [Fig. 2; $\mathrm{H} 4 B \cdots \mathrm{~N} 1 A=2.66 \AA, \mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{~N} 1 A=159^{\circ} ; \mathrm{H} 4 A \cdots \mathrm{~N} 1 B^{\mathrm{i}}$ $=2.63 \AA$ and $\mathrm{C} 4 A-\mathrm{H} 4 A \cdots \mathrm{~N} 1 B^{\mathrm{i}}=157^{\circ}$; symmetry code: (i) x, $y,-1+z]$. Similar chains are observed in the crystal structures of 2,6 -lutidine and 3,5-lutidine. Within the chains in (I), adjacent molecules are twisted about the direction of chain propagation with an angle between the least-squares planes through adjacent molecules of 54.0 (1) ${ }^{\circ}$. This twist presumably accommodates the steric requirements of the methyl substituents. Adjacent chains are arranged in a parallel manner to give polar sheets parallel to (010) (Fig. 2). Chains in adjacent sheets are arranged in an anti-parallel manner so that the crystal is not macroscopically polar (Fig. 3).

Experimental

The sample (99%) was obtained from the Lancaster company and used without further purification. The crystal was grown in a 0.3 mm glass capillary tube at ca 236 K (a temperature only slightly less than the melting point of the solid in the capillary tube) using a technique described earlier (Davies \& Bond, 2001). Once grown, the crystal was cooled to 150 (2) K for data collection. The length of the cylindrical crystal was not estimated, but it exceeded the diameter of the collimator (0.35 mm).

Received 11 February 2002

Accepted 19 February 2002 Online 28 February 2002

The asymmetric unit and atom-labelling scheme, showing displacement ellipsoids (C / N atoms) at the 50% probability level ($X P$; Sheldrick, 1993). Independent molecules are denoted by the suffixes A and B.

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{\mathrm{H}} \mathrm{N}$
$M_{r}=107.15$
Triclinic, $P \overline{1}$
$a=7.0991(4) \AA$
$b=7.7279(5) \AA$
$c=12.3900(9) \AA$
$\alpha=108.139(4){ }^{\circ}$
$\beta=92.399(4)^{\circ}$
$\gamma=96.743(5)^{\circ}$
$V=639.26(7) \AA^{\circ}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.113 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2259 \\
& \quad \text { reflections } \\
& \theta=1.0-22.5^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Cylinder, colourless } \\
& 0.15 \mathrm{~mm} \text { (radius) }
\end{aligned}
$$

Data collection
Nonius KappaCCD diffractometer
$R_{\text {int }}=0.030$
Thin-slice ω and φ scans
Absorption correction: none
4192 measured reflections
2827 independent reflections 1643 reflections with $I>2 \sigma(I)$

Figure 2
Projection on to (010) of a single layer of (I), showing polar chains linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions into polar sheets (CAMERON; Watkin et al., 1996).

Figure 3
Projection on to (100), showing layers of (I) arranged in an antiparallel manner (CAMERON; Watkin et al., 1996).

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.145$
$S=1.03$
2827 reflections
155 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0487 P)^{2} \\
&+0.1043 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \AA^{-3}
\end{aligned}
$$

H atoms were placed geometrically and refined with isotropic displacement parameters, with common parameters assigned to chemically equivalent H atoms (one parameter for all methyl H atoms, four parameters in total). Both methyl groups are disordered and were modelled as two sets of positions, each position rotated at 60° from the other about the local threefold axis.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR-92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ (Sheldrick, 1993) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C.,
Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bond, A. D., Davies, J. E. \& Kirby, A. J. (2001). Acta Cryst. E57, o1242-o1244.
Bond, A. D. \& Davies, J. E. (2002). Acta Cryst. E58, o5-o7.
Davies, J. E. \& Bond, A. D. (2001). Acta Cryst. E57, o947-o949.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

